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We consider the spreading of a droplet of soluble surfactant, at concentrations beyond
its critical micelle concentration (CMC), on a pre-existing thin liquid layer. Lubrication
theory is used to derive a coupled system of four two-dimensional nonlinear evolution
equations for the film thickness and surfactant concentration at the interface and in
the bulk as both monomers and micelles. These equations are parameterized by a
number of dimensionless groups that reflect the relative importance of Marangoni
stresses, surface and bulk diffusion, capillarity, surfactant solubility, sorption kinetics
and the nonlinearity of the equation of state. Our results for the base state indicate
that two parameters in particular exert a significant influence on the flow profiles:
the dimensionless mass of surfactant deposited, M , and a parameter reflecting the
preference of the surfactant to form micelles, R. For a fixed value of R, increasing
M leads to the development of a protuberance that appears at the edge of the drop;
upon increasing M further, this protuberance separates from the drop to form a
distinct secondary front that lies behind a leading front that usually accompanies the
spreading process. Our examination of the linear and nonlinear stability of the system
through a transient growth analysis and transient numerical simulations, respectively,
indicates that these features are vulnerable to transverse perturbations, leading to
the formation of fingers. The results obtained in the present work are in qualitative
agreement with recently available experimental data.

1. Introduction
The spreading of surfactant-laden fluid droplets over thin pre-existing fluid layers

or solid substrates has received considerable attention in both the theoretical and
experimental literature (see the recent review by Afsar-Siddiqui, Luckham & Matar
2003a and references therein). The mechanisms behind spreading and wetting are
critical to applications in a range of diverse settings that span coating flows,
agrochemicals and drug delivery. The addition of a surface-active material (a
surfactant) can have a dramatic effect on the spreading properties of a liquid droplet
(Stoebe et al. 1997a, b). In many of these settings, such as manufacturing chemical
sprays, for instance, the increased spreading rates that result from surfactant addition
are desirable. For processes in which this beneficial effect should be optimized, a full
understanding of the surfactant’s role is required.
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The spreading process for surfactant monolayers over thin fluid layers, in the
absence of perturbations, is well-understood for both soluble and insoluble surfactants
(see, for instance, Jensen & Grotberg 1992, 1993; Afsar-Siddiqui et al. 2003a and
references therein). The increase in the rates of spreading is related to the presence
of surfactant concentration gradients, which give rise to surface tension gradients
and, in turn, to Marangoni stresses that lead to spreading in the direction of low
concentrations (high surface tension). These stresses deform the underlying liquid film
so that a thickened fluid ridge forms at the surfactant leading edge with a severely
thinned region appearing upstream of the ridge, near the surfactant deposition.
Experimental observations, however, have revealed that surfactant-driven spreading
is often accompanied by the formation of fingering patterns that appear, with varying
intensity and structure, behind the advancing front. These fingering phenomena (see
examples shown in figure 1) have been observed by a number of research groups
using a variety of different surfactants on solid substrates pre-wetted with thin films
of varying thickness (Marmur & Lelah 1981; Troian, Wu & Safran 1989b; He &
Ketterson 1995; Frank & Garoff 1995; Bardon et al. 1996; Cachile et al. 1999;
Cachile & Cazabat 1999; Fischer, Darhuber & Troian 2001; Cachile et al. 2002;
Afsar-Siddiqui, Luckham & Matar 2003a, b; Darhuber & Troian 2003; Hamraoui
et al. 2004). This fingering instability affects the efficiency of the spreading process
and the surface coverage achieved.

The need to isolate the physical mechanism responsible for these fingering
phenomena has motivated a number of modelling studies, beginning with the work
of Troian, Herbolzheimer & Safran (1990) who considered the spreading of a thick
drop, laden with insoluble surfactant, on a thinner liquid film. Their linear stability
analysis revealed that Marangoni stresses are responsible for the instability. This work
exploited certain similarities between the surfactant-driven fingering phenomena and
the well-known viscous fingering problem. Matar & Troian (1999) and Warner,
Craster & Matar (2002) conducted a transient growth analysis and full numerical
simulations of the spreading of a surfactant monolayer (rather than a surfactant-
laden drop) on a thin film of initially uniform thickness. This analysis showed that
considerable transient perturbation growth, ultimately followed by decay and not
localized in the thinning region, can occur in the absence of van der Waals forces,
which, when included, gave rise to asymptotic growth in the thinning region. Fischer &
Troian (2003) showed that it is possible to obtain sustained perturbation growth, for
the monolayer problem, in the absence of van der Waals forces but only in the
presence of continuous ‘feeding’ of surfactant at the flow origin.

More recently, Warner, Craster & Matar (2004a, b) examined the flow of a
thick surfactant deposition on a much thinner film (with negligible van der Waals
forces) using linear stability and transient growth analyses, together with numerical
simulations, and showed that the fingering mechanism is intimately linked to the
adverse mobility gradients in the thinning region; these gradients owe their existence to
the large disparity in thickness between the deposited drop and the thinner underlying
film, pre-wetting the solid substrate. The thickness disparity introduced in the model
is the vital ingredient missing in earlier models of the fingering process; asymptotic
methods (Jensen & Naire 2006) can be used to explore the origin of the fingering
mechanism further. Increasing the ratio of the ‘precursor’ thickness to that of the drop
led to a decrease in growth and eventually to decay of applied perturbations. Full
numerical simulations of the nonlinear governing equations showed the evolution
of fingering patterns in the thinned region that bear great resemblance to those
observed experimentally. Incidentally, surfactant-induced Marangoni stresses have
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Figure 1. Four typical experimental photographs: (a) and (b) are reprinted from Hamraoui
et al. 2004 (with permission from Elsevier) ((a) C12E10 at 1.5 CMC on a 120 nm film of
ethyleneglycol (EG), (b) C12E4 at 1 CMC on a 120 nm EG film); (c) by Luckham and
co-workers (2.8 CMC SDS in a 4:1 glycerol/water suspension on an approximately 250 nm
film) and (d) reprinted from Darhuber & Troian (2003) with permission (SDS in glycerol
spreading on a 1–10 µm film). (a) The fingers are situated in the thinned region between the
drop and the thickened front; this the case that has been successfully modelled by Warner
et al. (2004a, b). (b) The fingers protrude from the foot of the drop, in the absence of a
pronounced thickness minimum. (c) The elevated region (to the left of the photograph) that
exhibits fingers is actually upstream of an advancing front that is barely visible as the light
ring in the photograph (L. Lee, M. Gee & P. F. Luckham personal communication, 2005);
this provides evidence for the emergence of two fronts. Note that the region upstream of the
fingered front also exhibits fingers, which are more ramified and resemble streamlets. Panel
(d) A thickened front at the top develops ahead of the thinned region which appears to exhibit
instabilities on two different scales.

recently also been shown to further destabilize the flow of a thin film down an
inclined plane (Edmonstone, Matar & Craster 2005) in which a fingering instability
occurs in the surfactant-free case.

The modelling work on the fingering instability, however, has focused on the
case of dilute surfactant concentrations, well below the critical micelle concentration
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(CMC). Yet the majority of the experimental studies have considered situations in
which the concentration exceeds the CMC (Troian et al. 1989; Cachile et al. 2002;
Afsar-Siddiqui et al. 2003a, b; Hamraoui et al. 2004). The importance of the CMC
is that surfactants are typically amphiphilic, that is, containing components that are
hydrophobic and hydrophillic. An amphiphilic molecule can arrange itself in different
ways to achieve equilibrium, the preferred state being at the interface, with the polar
group in the aqueous medium and the non-polar part held above the surface; this
is the preferred arrangement at concentrations below the CMC. However, beyond
the CMC the molecules rapidly form aggregates, micelles, in the bulk in which the
hydrophobic tails are oriented within the micelle and the hydrophilic polar head
groups are in contact with the (aqueous) solvent.

The most recent experimental work of Cazabat and co-workers (Hamraoui et al.
2004) has demonstrated the emergence of some important features of the flow, which
are simply not captured by the existing models for surfactant droplet spreading. For
instance, the surfactant-driven thickened rim in the experiments often advances in time
like t1/2, consistent with reservoir feeding of surfactant, rather than t1/4 which is the
power-law predicted by our existing models that is consistent with the deposition of
a finite mass of surfactant (Jensen & Grotberg 1992); clearly there is a discrepancy.
This indicates the existence of a mechanism, absent from our models, that gives
rise to behaviour that mimics that associated with the spreading of a front being
supplied from an infinite reservoir of surfactant. The minimum in the film thickness
which, in all of the studies in the literature, appears near the surfactant deposition,
upstream from the advancing rim is only present in the work of Hamraoui et al.
(2004) for concentrations above the (CMC) or for spreading over solid substrates
pre-coated with sufficiently thick films (in excess of 100 nm) (see figure 1a). These
researchers have shown that the minimum is completely absent from the thickness
profiles in the case of spreading over very thin films or bare solid substrates, and
for dilute concentrations. Yet in spite of its absence, Hamraoui et al. (2004) have
still observed fingering; in these cases, the fingers appear to grow almost directly
out from the side of the drop (see figure 1b). These are important points: first, our
models for the base state always predict the presence of a minimal thickness; second,
this feature of the flow, according to Warner et al. (2004a, b), controls the onset and
evolution of the fingering patterns. Hamraoui et al. (2004) have also shown that
the degree of finger branching exhibits a maximum for a surfactant concentration
for which the rate of change of the surface tension with respect to the surface
concentration is maximal, indicating the necessity of having a sufficiently large flux
from the surfactant deposition to provide feeding of the fingers from the upstream
end. Moreover, recent work using the surfactant sodiumdodesylsulphate (SDS) in
either glycerol or glycerol/water suspensions (Darhuber & Troian 2003; L. Lee, M.
Gee & P. F. Luckham, Personal Communication, 2005) shows the development of two
thinning regions with associated fingered spreading (see figure 1c, d). It is also clear
from figure 1(c) that the inner set of fingers undergoes considerable tip-splitting and
exhibits fractal-like patterns, which bear great resemblance to those generated via
diffusion-limited aggregation or Laplacian-driven processes. The outer set of fingers
is, in contrast, much less ramified. There is no existing theory that captures or explains
this two-thinned-regions phenomenon.

The recent experimental observations mentioned above and shown in figure 1 pose
new challenges and questions to which predictive models of the surfactant spreading
problem should provide answers. This article provides answers to some of these
questions via detailed modelling of the spreading of thick drops laden with soluble
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Figure 2. A schematic of the typical flow geometry. A surfactant-laden drop containing
both micelles and monomers is deposited upon a clean pre-existing film. The surface tension
variation drives the flow that creates a leading front and a thinned region separating it and
the drop.

surfactant, present at concentrations that can exceed the CMC, on thin liquid films
of varying thickness. Lubrication theory will be used to develop evolution equations
for the film thickness and the surfactant concentration, which will be present in the
form of monomers (that have a bulk and an interfacial concentration) and micelles.
The derivation of these equations builds on that of Breward & Howell (2004), who
studied the effect of micellar formation on a flow in a different context. Rapid vertical
diffusion of surfactant in the bulk is assumed (Jensen & Grotberg 1993; Warner et al.
2004b) so that vertical concentration variations are erased over very short time scales,
allowing the dynamics of the concentrations to be described by one-dimensional
partial differential equations. The model accounts for Marangoni stresses, capillarity,
surface and bulk diffusion, and the formation and breakup of micelles; closure is
achieved by a nonlinear surfactant equation of state.

The rest of this paper is organized as follows. In § 2 the governing equations will
be developed, along with the initial and boundary conditions. Section 3 will deal with
the dynamics of the unperturbed spreading process and the effect of each parameter
on the evolution of the model. Section 4 will present results of a stability analysis,
including the results from the fully nonlinear two-dimensional simulations. Section 5
will provide some discussion and concluding remarks.

2. Formulation
2.1. Governing equations

We consider the dynamics of a drop of an incompressible, Newtonian fluid with
viscosity µ∗ and density ρ∗ laden with soluble surfactant, which has been deposited
on a rigid and impermeable solid substrate, pre-wetted with an uncontaminated thin
uniform fluid film of the same fluid as the drop (figure 2). This mimics the experiments
by Hamraoui et al. (2004) and others, which involve careful preparation of a thin fluid
layer upon which the surfactant-laden droplet is then placed. The initial thicknesses
of the drop and pre-existing film are H∗ and H∗

b respectively. The geometric ratio,
b, defined as b ≡ H∗

b/H∗ characterizes the disparity in thickness between the droplet
and the underlying fluid layer. The characteristic width of the drop is L∗ and is
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assumed to greatly exceed H∗ so that the drop aspect ratio, ε ≡ H∗/L∗, is assumed
to be very small, which permits the use of lubrication theory; this will be used below
to derive the evolution equations that govern the system dynamics.

Here we allow the concentration of the surfactant in the drop to exceed the
critical micelle concentration (CMC) beyond which the surfactant can be present in
three different forms: as a monomer, which can exist either in the bulk or at the
interface with concentrations c∗ and Γ ∗, respectively, or as a micellar aggregate with
concentration m∗. The exchange between the different phases proceeds as follows.
First at the interface

Γ ′ � S + c′, (2.1)

which represents the transfer of a surface molecule, Γ ′, into the bulk phase, c′, thus
creating a space, S, at the free surface or conversely a monomer from the bulk
using up a space at the interface; this model leads, at equilibrium, to the Langmuir
isotherm and accounts for the effect, important at high concentrations, that the
interfacial surfactant monomer may fully pack the interface. Implicit in the model
is that the total space at the interface is limited, i.e. in terms of the concentrations
Γ ∗ + sΓ ∗

∞ = Γ ∗
∞, with Γ ∗

∞ as the concentration at maximum packing. Secondly, the
micelles and bulk monomer are related via

n c′ � m′, (2.2)

which represents the creation of a micelle, m′, in the bulk phase from n free bulk
surfactant molecules, or the breakup of a micelle into n bulk monomers.

These relations carry with them certain implicit and natural assumptions. For
instance, it is assumed that the micelles do not adsorb directly onto the interface, but
that they must completely disassociate first into bulk monomers. It is also assumed
that there is a strongly preferred micelle size, n, which is indeed often the case in
reality (Hunter 1991).

This is a considerable idealization of micelle disassociation which is in itself a
complex process. The simple one-step model used here is about the simplest available
which captures the essence of an aggregate of monomers breaking up and reforming.
This area remains an active one: a recent review by Noskov (2002) summarizes
micellization kinetics and their influence upon surfactant adsorption and one can
utilize more complicated polydisperse and multiple step models that model the
breakup process more realistically, see also Hunter (1991). Alternatively, other simple
disassociation models such as, say, the Fainerman model used in Liao, Basaran &
Franses (2003) could be utilized at this point in the analysis; we return to this in our
concluding remarks.

We shall also assume that the initial concentration of each of these phases is
uniform within the droplet and that equilibrium conditions prevail.

We use a rectilinear coordinate system, (x∗, y∗, z∗), to model the dynamics in which
x∗, y∗ and z∗ denote the horizontal, transverse and vertical coordinates and the
velocity field is u∗ = (u∗, v∗, w∗) and u∗, v∗ and w∗ correspond to the components of
the velocity field in these directions, respectively. The free surface and solid substrate
are located at z∗ =h∗(x∗, y∗, t∗) and z∗ = 0, respectively, where t∗ represents time.
Marangoni spreading is driven by the spreading pressure S∗ = σ ∗

c − σ ∗
m, which is the

difference between the surface tension of the initial surfactant deposition, σ ∗
m, and

that of the underlying clean uncontaminated film, σ ∗
c . The local surface tension, σ ∗,

is dependent on the local value of the surfactant surface concentration, Γ ∗, through
the so-called Sheludko equation of state (Sheludko 1967; Gaver & Grotberg 1990)
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which is nonlinear and appropriate for use at high surfactant concentrations:

σ ∗

S∗ = (α + 1)

(
1 +

Γ ∗

Γ ∗
∞

[
((α + 1)/α)1/3 − 1

])−3

, (2.3)

in which α ≡ σ ∗
m/S∗. Here, Γ ∗

∞ represents the interfacial surfactant concentration at
maximum packing. Inspection of (2.3) reveals that, at high concentrations, Marangoni
stresses are not only dependent on the gradient Γ ∗

x , but also on the concentration
Γ ∗. Other equations of state are available, and in use, (see, for instance, Edwards,
Brenner & Wasan 1991 and references therein); we choose the Sheludko model for
definiteness. It is not thermodynamically consistent with the Langmuir isotherm used
later (Chang & Frances 1995), however we simply use it as an empirical model with
an easily adjustable nonlinearity.

The spreading dynamics are governed by the equations of continuity and the
Navier–Stokes equations:

∇ · u∗ = 0, ρ∗(u∗
t∗ + u∗ · ∇u∗) = −∇p∗ + µ∗∇2u∗, (2.4)

where p∗ is the pressure and we have neglected gravitational and intermolecular
forces. Convective–diffusion equations for the concentration of the surfactant phases
are taken as

Γ ∗
t∗ + ∇s · (u∗

sΓ
∗) + Γ ∗(u∗ · n∗)κ∗ = D∗

s ∇2Γ ∗ + J ∗
Γ c, (2.5)

c∗
t∗ + u∗ · ∇c∗ = D∗

b∇2c∗ − nJ ∗
cm, (2.6)

m∗
t∗ + u∗ · ∇m∗ = D∗

m∇2m∗ + J ∗
cm. (2.7)

Here, Γ ∗, c∗ are the concentrations of surface and bulk monomers and m∗ is the
concentration of micelles; each micelle contains n monomers; the subscript ‘s’ signifies
interfacial quantities, Di(i = b, m, s) represent the diffusion coefficients (assumed to
be constant) of the monomers in the bulk, the micelles, and of the monomers at
the surface, respectively; k∗

1 and k∗
2 are adsorption and desorption rate constants

associated with monomer transport to and from the interface, and k∗
3 and k∗

4 are the
rate constants associated with the formation, and breakup, of micellar aggregates of n

surfactant monomer molecules. In (2.5), κ∗ = ∇s · n is the curvature of the fluid surface
in which ∇s =(I − nn) · ∇ wherein n = ∇h∗/|∇h∗| is the outward pointing normal to
the interface and I is the identity tensor.

Equations (2.5)–(2.7) are complemented by the sorptive flux relations governing the
exchange of monomer species between the surface and bulk:

J ∗
Γ c = k∗

1c
∗
s

(
1 − Γ ∗

Γ ∗
∞

)
− k∗

2Γ
∗, (2.8)

which follows from (2.1) and notably contains a nonlinear term such that when
Γ ∗ → Γ ∗

∞, that is, when the surface becomes fully packed with monomers, no further
surfactant is adsorbed. At equilibrium, this is the Langmuir adsorption isotherm and
for dilute concentrations, when this nonlinear term is absent, the linearized sorption
kinetics model used by Jensen & Grotberg (1993) is obtained. Other isotherms (see,
for instance, Chang & Frances 1995) are available to model different kinetics, but the
Langmuir model is widely adopted and incorporates the surface packing behaviour
and so it is used here.

Similarly, there is a sorptive flux controlling the exchange between monomers and
micelles in the bulk:

J ∗
cm = k∗

3c
∗n − k∗

4m
∗. (2.9)
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Notably, the law of mass action when applied to (2.2) leads to the nonlinear term in
c∗; for large values of n, which are typical of micelles, this can lead to sharp changes
in the micelle concentration.

Solutions of (2.4) are obtained subject to no-slip and no-penetration conditions,
u∗ = 0, at z∗ = 0, in addition to continuity of the normal and tangential stresses, and
the kinematic boundary condition at z∗ =h∗(x∗, y∗, t∗), respectively given by

n · T ∗·n = σ ∗κ∗, (2.10)

n · T ∗ · t = t · ∇sσ
∗, (2.11)

h∗
t∗ + u∗

sh
∗
x∗ = w∗, (2.12)

where T∗ = −p∗ + µ∗(∇u∗ + ∇u∗T

) is the total stress tensor and t is the tangent to the
interface. The boundary conditions imposed on the variables to be determined from
(2.5)–(2.7) are that

(Γ ∗
x∗, c∗

x∗, m∗
x∗) = 0 at x∗ = (0, L∗

x), (2.13)

−D∗
b[n

∗ · ∇c∗]s = J ∗
Γ c, m∗

z∗ = 0 at z∗ = h∗(x∗, y∗, t∗),

(c∗
z∗, m∗

z∗) = 0 at z∗ = 0,

}
(2.14)

where L∗
x is the dimensional length of the spatial domain in the horizontal direction;

periodic boundary conditions are imposed on all variables in the transverse direction.
The only boundary condition worthy of comment is m∗

z = 0 at z∗ = h∗ which implies
that no micelles are adsorbed directly to the surface, but must break up into bulk
monomers first.

The total mass of surfactant deposited per unit width, M∗, is∫ ∞

0

∫ h∗

0

(c∗ + nm∗) dz∗dx∗ +

∫ ∞

0

Γ ∗dx∗ = M∗, (2.15)

which is conserved. The scalings adopted in the present work are presented next.

2.2. Scaling

The governing equations, sorptive fluxes and boundary conditions are rendered
dimensionless via the following scalings:

(x∗, y∗, z∗, h∗) = L∗(x, y, εz, εh), (u∗, v∗, w∗) = U∗(u, v, εw), t∗ =
L∗

U∗ t,

p∗ =
S∗

H∗ p, Γ ∗ = Γ ∗
∞Γ, c∗ = c∗

cmcc, m∗ =

(
c∗
cmc

n

)
m, σ ∗ = S∗σ + σ ∗

m,

J ∗
Γ c =

(
U∗Γ ∗

∞
L∗

)
JΓ c, J ∗

cm =

(
U∗c∗

cmc

L∗

)
Jcm,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(2.16)

where U∗ = S∗H∗/(µ∗L∗) and c∗
cmc = (k∗

4/nk∗
3)

1/(n−1). The characteristic bulk sur-
factant concentration has been taken to be the critical micelle concentration c∗

cmc, and
when non-dimensionalizing the micelle concentration we have inserted a factor of n

so the non-dimensional micelle concentration is a measure of the concentration of
monomers present in the micellar phase.

Substitution of (2.16) into (2.4)–(2.14), yields the following two-dimensional set of
coupled, highly nonlinear evolution equations for h, Γ , c and m in the lubrication
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approximation (ε → 0) (Edmonstone 2005):

ht = −∇ ·
(

C
3

h3∇∇2h +
1

2
h2∇σ

)
, (2.17)

Γt =
∇2Γ

Pes

− ∇ ·
(

C
2

h2Γ ∇∇2h + hΓ ∇σ

)
+ JΓ c, (2.18)

ct =
1

hPeb

∇ · (h∇c) −
(

C
3

h2∇∇2h +
h

2
∇σ

)
· ∇c − β

h
JΓ c − Jcm, (2.19)

mt =
1

hPem

∇ · (h∇m) −
(

C
3

h2∇∇2h +
h

2
∇σ

)
· ∇m + Jcm, (2.20)

where σ=[(α + 1)/α](1 + θ(α)Γ )−3 − α in which θ(α) = (α + 1))1/3 − 1 and the fluxes
JΓ c and Jcm are expressed by

JΓ c = Ks(Rc(1 − Γ ) − Γ ), (2.21)

Jcm = Kb(c
n − m). (2.22)

Note that we have invoked the rapid vertical diffusion assumption in deriving (2.19)
and (2.20) by substituting

(c, m)(x, y, z, t)= (c0, m0)(x, y, t) + ε2(Peb, Pem)(c1, m1)(x, y, z, t), (2.23)

into these equations, taking the limit ε2(Peb, Pem) → 0 and performing cross-sectional

averaging; note that (1/h)
∫ h

0
(c1, m1)dz = 0 (Jensen & Grotberg 1993; Warner et al.

2004b; Edmonstone 2005) and that the ‘0’ subscripts have been suppressed. The
dimensionless surfactant monomer mass deposited per unit width is∫ ∞

0

h(c + m) dx + β

∫ ∞

0

Γ dx = M, (2.24)

where M∗ has been non-dimensionalized with H ∗L∗c∗
cmc, i.e. the volume times the

critical micelle concentration.
This is a parametrically rich problem. The dimensionless groups that appear in

(2.17)–(2.22) are C ≡ ε2σ ∗
m/S∗, a capillary parameter, Pei ≡ (U∗L∗/D∗

i )(i = b, m, s)
are Péclet numbers representing a ratio of convective to diffusive time scales for the
monomers and micelles in the bulk and the monomers at the interface, respectively;
β ≡ Γ ∗

∞/(H∗c∗
cmc) provides a dimensionless measure of the degree of solubility of

the surfactant into the bulk solute (β � 1 signifies high solubility and β 	 1 is a
virtually insoluble surfactant trapped upon the surface); (Ks, Kb) ≡ (k∗

2, k
∗
4)L∗/U∗ are

dimensionless kinetics constants, giving a time scale for local equilibrium to occur
between the phases; R ≡ k∗

1c
∗
cmc/(k

∗
2Γ

∗
∞) is a dimensionless measure of the ease with

which micelles are formed within the bulk. Thus for small R values one would expect
the majority of the surfactant to exist in the bulk, either in monomer or micellar
form; conversely, for large R, the surfactant interfacial concentration is expected to
be large.

In addition we have a parameter, α, that gives a measure of the nonlinearity of the
equation of state; large α corresponds to a linear equation of state. The dimensionless
mass of surfactant present, M , is also an important parameter in the model as a dilute
approximation is no longer valid. There is also a parameter, b, giving a measure of
height difference between the thin film and the drop: small b corresponds to a large
droplet placed upon a very thin fluid layer; our earlier work shows that this parameter
is important for finger formation. Indeed, in Warner et al. (2004a), it is shown that
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System parameter Representation Value range

Capillary parameter C ≡ ε2σ ∗
m/S∗ 0.1–0.0001

Surface Péclet number Pes ≡ U∗L∗/D∗
s 100–100,000

Bulk monomer Péclet number Peb ≡ U∗L∗/D∗
b 10–10,000

Micelle Péclet number Pem ≡ U∗L∗/D∗
m 10–10,000

Surfactant solubility β ≡ Γ ∗/Hc∗
cmc 0.01–∞

Surface kinetics parameter Ks ≡ k∗
2L∗/U∗ 0.1–100

Bulk kinetics parameter Kb ≡ k∗
4L∗/U∗ 0.1–100

Surfactant distribution parameter R ≡ k∗
1c

∗
cmc/k∗

2Γ
∗

∞ 0.01–100
Equation of state parameter α ≡ σ ∗

m/S∗ 0.1–∞
Preferred micelle size n 5–100
Surfactant mass M = H∗c∗

cmcL∗ 0.1–20
Thickness ratio: film/drop height b = H∗

b/H∗ 0–1

Table 1. Definitions and order of magnitude estimates of the dimensionless parameters
appearing in (2.17)–(2.22).

increasing b eventually leads to a situation where the spreading process is stable and
one reverts to a surfactant monolayer spreading problem: in the numerical simulations
we choose a value of b intended to be typical of that in experiments where a relatively
large droplet is placed upon a pre-existing thin film of fluid (of the order of 100 nm
thick).

Estimates of these dimensionless parameters are found in table 1 with parameter
ranges obtained from a number of sources that have examined surfactant-driven flows
(Chang & Frances 1995; Jensen & Grotberg 1993; Afsar-Siddiqui el al. 2003a, b;
Warner et al. 2004a, b).

2.3. Linearization and growth measures

In order to investigate the stability of the spreading process to infinitesimally small
transverse perturbations, we insert the decomposition

(h, Γ, c, m)(x, y, t) = (h0, Γ0, c0, m0)(x, t) + (h1, Γ1, c1, m1)(x, t) exp(iky), (2.25)

into (2.17)–(2.22) and linearize the resultant equations about the nonlinear base state
h0, Γ0, c0 and m0. Here, the subscripts ‘0’ and ‘1’ respectively denote one-dimensional
base-state variables and disturbance quantities, characterized by a wavenumber k.
The nonlinear base-state equations are

h0t = −
[

C
3

h3
0h0xxx +

1

2
h2

0σ0x

]
x

, (2.26)

Γ0t =
Γ0xx

P es

−
[

C
2

h2
0Γ0h0xxx + h0Γ0σ0x

]
x

+ Ks(Rc0(1 − Γ0) − Γ0), (2.27)

c0t=
(h0c0x)x
Pebh0

−C
3

h2
0c0xκ0x−1

2
h0σ0xc0x−βKs

h0

(Rc0(1−Γ0) − Γ0)−Kb

(
cn
0 − m0

)
, (2.28)

m0t =
(h0m0x)x
Pemh0

− C
3

h2
0m0xκ0x − 1

2
h0σ0xm0x + Kb

(
cn
0 − m0

)
, (2.29)

with κ0 = h0xx .
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The evolution equations governing the dynamics of the linear perturbations are
given by

h1t = −C
3

[(
h3

0κ1x + 3h2
0h1κ0x

)
x

− k2h3
0κ1

]
− 1

2

[(
h2

0σ1x +2h0h1σ0x

)
x

− k2h2
0σ1

]
, (2.30)

Γ1t = −C
2

[(
h2

0Γ0κ1x + h2
0Γ1κ0x + 2h0h1Γ0κ0x

)
x

− k2h2
0Γ0κ1

]
− [(h0Γ0σ1x + h0Γ1σ0x + h1Γ0σ0x)x − k2h0Γ0σ1] +

1

Pes

(Γ1xx − k2Γ1)

+ Ks(R(c1 − c1Γ0 − c0Γ1) − Γ1), (2.31)

c1t = −C
3

[
h2

0c0xκ1x + h2
0c1xκ0x + 2h0h1c0xκ0x

]
− 1

2
[h0σ0xc1x + h0σ1xc0x + h1σ0xc0x]

+
1

Peb

[
1

h0

(h0xc1x +h1xc0x) − h0xc0xh1

h2
0

+ c1xx − k2c1

]
− βKs

h0

(R(c1 − c1Γ0 − c0Γ1)

− Γ1) + βKs

h1

h2
0

(
Rc0(1 − Γ0) − Γ0

)
− Kb(nc1c

n−1
0 − m1), (2.32)

m1t = −C
3

[
h2

0m0xκ1x + h2
0m1xκ0x + 2h0h1m0xκ0x

]
− 1

2
[h0σ0xm1x + h0σ1xm0x + h1σ0xm0x]

+
1

Pem

[
1

h0

(h0xm1x + h1xm0x) − h0xm0xh1

h2
0

+ m1xx − k2m1

]
− Kb(nc1c

n−1
0 − m1). (2.33)

Since the base state evolves in both space and time, we use the following definition
for the asymptotic growth rate of a perturbation, ωi(i = h, Γ, c, m) (Edmonstone et al.
2005):

ωi = lim
t→∞

ln Gi(t)

2t
, i = h, Γ, c, m, (2.34)

where Gi are amplification ratios given by

Gi(t) =
(Ei1/Ei0 )(t)

(Ei1/Ei0 )(t = 0)
, i = h, Γ, c, m. (2.35)

Here, Eq(t) =
∫ ∞

0
(q − q∞)2(x, t) dx where (q = h0, h1, Γ0, Γ1, c0, c1, m0, m1) and (q∞ =

b, 0, 0, 0, 0, 0, 0, 0). In § 4 we use these to create numerical ‘dispersion curves’ that
illustrate the dependence of ωh on k and capture the ‘linear stability’ characteristics
of the spreading process as a function of system parameters.

2.4. Numerical procedure

The numerical scheme EPDCOL (Sincovec & Madsen 1979; Keast & Muir 1991)
is used to obtain solutions of the one-dimensional evolution equations. This reliable
scheme, which uses finite element collocation for spatial discretization and Gear’s
method in time, has previously been used to solve equations governing surfactant-
driven thin films accurately and efficiently (Warner et al. 2004a, b); 2000–3000 grid
points were used in the majority of the computations over the spatial interval 0 �
x � Lx = 30.

The initial condition used for the film thickness is given by

h0(x, 0) = (1 + b − x2)F (1 − x) + b F (x − 1), (2.36)

(Γ0, c0, m0)(x, 0) = (Γo, co, mo)F (1 − x), (2.37)
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Figure 3. Variation of the initial micelle concentration, m0, with R for β = 0.1, 1, 10. Also
shown as the thin dotted line is an approximate relation for mo given by (2.40); here, M = 3
and n= 10.

where F (x) = 1
2
[1 + tanh(100x)]. In order to relate the values of (Γo, co, mo) to the

mass of surfactant deposited, we assume that, at t =0, the fluxes JΓ c = Jcm = 0 so the
surfactant is in local equilibrium initially, whence

co = m1/n
o , Γo =

Rm1/n
o

1 + Rm
1/n
o

. (2.38)

Substitution of (2.38) into (2.24) and ignoring the precursor layer yields

2

3

(
m1/n

o + mo

)
+

βRm1/n
o

1 + Rm
1/n
o

= M, (2.39)

which is solved numerically for mo (> 0) for a prescribed value of M(see figure 3).
If we assume that n 	 1, so that m1/n

o ≈ 1, then simple formulae for Γo, co and mo

emerge as

Γo ∼ R

1 + R
, co ∼ 1, mo ∼ 3

2

(
M − βR

1 + R

)
− 1. (2.40)

For R � 1, we then have

Γo ∼ 0, co ∼ 1, mo ∼ 3M

2
− 1, (2.41)

while for R 	 1 we have

Γo ∼ 1, co ∼ 1, mo ∼ 3

2
(M − β) − 1. (2.42)

For M 	 1, we have

Γo ∼ R

1 + R
, co ∼ 1, mo ∼ 3M

2
, (2.43)

suggesting that increasing the total mass of deposited surfactant simply results in
a significant increase in the initial concentration of micelles and a relatively minor
change in the surface and bulk concentrations of the monomers. Also, for β � 1, the
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limit of high solubility, we have

Γo ∼ R

1 + R
, co ∼ 1, mo ∼ 3M

2
− 1, (2.44)

while in the insoluble surfactant limit, β 	 1,

Γo ∼ 1, co ∼ 0, mo ∼ 0; (2.45)

hence all the surfactant is present at the interface.
If M � 1 then we begin to enter the dilute regime where micelles are not present,

and indeed solving (2.39) numerically gives mo � 1. Here the natural variable is co

and one sets mo = 0 (and decouples the m0 equation from consideration). The initial
concentrations are found by solving

2

3
co +

βRco

1 + Rco

= M, Γo =
Rco

1 + Rco

. (2.46)

The solutions obtained for (h0, Γ0, c0, m0)(x, t) are subject to the following boundary
conditions:

h0x = h0xxx = Γ0x = c0x = m0x = 0 at x = (0, Lx), (2.47)

where the Lx denotes the dimensionless length of the computational domain in the
x-direction.

The initial conditions for the perturbations represent disturbances localized near
the flow origin:

h1(x, 0) = Γ1(x, 0) = c1(x, 0) = m1(x, 0) = 0.005 exp(−5x2), (2.48)

while the boundary conditions are chosen to preserve undisturbed conditions far away
from the drop and to impose symmetrical solutions about the flow origin:

h1x = h1xxx = Γ1x = c1x = m1x = 0 at x = (0, Lx). (2.49)

In order to obtain numerical solutions of the two-dimensional evolution equations,
(2.17)–(2.22), the procedure used by Warner, et al. (2004a, b) is utilized in the
present work. This is based on an alternating-direction-implicit (ADI) scheme (see
also Witelski & Bowen 2003), which employs operator splitting methods enabling
computations to be carried out via solution of one-dimensional problems that
results in considerable increase in efficiency. Two-dimensional numerical solutions
are obtained starting from

h(x, y, 0) = (1 − x2 + b)F (1 − x) + bF (x − 1) + Af (x, y),
(Γ, c, m)(x, y, 0) = (Γo, co, mo)F (1 − x),

}
(2.50)

where the amplitude A ∈ (10−3 − 10−2) and f (x, y) are pseudo-random perturbations
to the film thickness, the perturbations having a uniform distribution on [−0.01, 0.01],
which is an initial condition more representative of an experiment. Alternatively one
chooses f (x, y) = exp(−Bx2)

∑N

i =1 Ci cos(qiy) for some constants B, qi, N so that this
is a finite-amplitude perturbation consisting of several transverse modes localized at
the edge of the surfactant deposition.

The transient numerical simulations of (2.17)–(2.20) are performed on a grid 0 <

x < Lx , 0 < y < Ly and are subject to the following boundary conditions:

(hx, hxxx)(0, y, t) = 0, h(Lx, y, t) = b, hx(Lx, y, t) = 0,

(Γx, cx, mx)(0, y, t) = 0, (Γ, c, m)(Lx, y, t) = 0,

}
(2.51)
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Figure 4. Spatio-temporal evolution of h0, Γ0, c0 and m0, shown in (a–d), respectively,
generated for the ‘base’ case (see text in § 2.4), except that R = 1, for t = 0 to 1000 with
the profiles drawn at intervals of 100. Here, the arrows indicate the direction of increasing
time.

where Ly is the dimensionless transverse length of the computational domain. Periodic
boundary conditions are imposed along the edges of the grid along y = (0, Ly).
Typically we utilize a 2π square grid and have a 200 × 200 mesh. We have ensured
that the results obtained from the transient growth analysis are reproduced by the ADI
scheme starting from small-amplitude perturbations. This comparative study made
use of the following definition for the ‘energy’ of the film thickness perturbation:

Eh1
=

k

π

∫ π/k

−π/k

∫ ∞

0

[h(x, y, t) − h0(x, t)]2 dx dy, (2.52)

with similar definitions introduced for the remaining variables.
Numerical solutions were obtained over a wide range of parameters. The ‘base’ case,

however, has broadly typical values of C = 10−3, Pes = 104, Peb = Pem =102, Ks =1,
Kb = 1, β =1, R = 10, α = 100, n= 10, M = 3, b = 0.05 and t = 104. Since the effect of
capillarity, surface and bulk diffusion, and sorption kinetics, characterized by C, Pes ,
α and Peb, and Ks , respectively, have been investigated by Jensen & Grotberg (1992,
1993), Warner et al. (2004a, b) and others, we concentrate mainly on the effect of
varying M , R, Pem, Kb and n on the dynamics. The numerical results for the base
state are presented next.

3. Base state
We begin the discussion of our results by showing in figure 4 a typical evolution

of the base-state variables, h0, Γ0, c0 and m0 generated with the ‘base’ parameter set,



Surfactant fingering beyond the critical micelle concentration 119

except R = 1. For these values of M and R, Γo =0.524, co = 1.101 and mo =2.613 which
imply that a significant proportion of the surfactant is initially in the form of micellar
aggregates. Inspection of figure 4(a) reveals that the drop spreads gradually under the
action of the Marangoni stresses in the direction of lower concentrations. A thickened
front is formed at the surfactant leading edge, which has thickness approximately
equal to 2b, and propagates rapidly relative to the drop; severe thinning occurs in
the region between the drop and the front. The drop, which must spread over this
much thinner region downstream, remains as a cap at late times. The behaviour of
the leading front is apparently similar to that for monolayer spreading (Jensen &
Grotberg 1992, 1993) and the ‘trapping’ of the droplet and the development of the
severely thinned region is similar to that found for insoluble and soluble surfactant
droplet deposition by Warner et al. (2004a, b). Several of the observed features, for
instance the shock-like behaviour in the height field at the surfactant leading edge, are
characterized by small-scale features with large slope that might render lubrication
theory invalid; however as time progresses the width of the shock increases and the
slopes become more moderate (Jensen & Grotberg 1992) and hence one expects the
results here to be valid except for very small times.

The Γ0 and c0 profiles, shown in figure 4(b, c) exhibit three regions of interest: a
region of almost uniform concentration near the flow origin, followed downstream
by two regions of approximately constant concentration gradient; the latter regions
coincide with the thinning region and the elevated region upstream of the ridge in
the film thickness profile. The concentration of micelles, m0, decreases significantly
with time, as shown in figure 4(d). It is also evident that the micelles are spatially
localized near the origin (m0 eventually becomes zero-valued in the thinning region)
and appear to remain completely trapped within the drop for the duration of the
spreading process. The drop, therefore, acts like a source of micelles, which, in turn,
dissociate into monomers, on time scales of order 1/Kb, that exist in the bulk or at
the interface depending on the relative magnitude of Ks and R. It is worth noting
that the local surfactant concentrations come rapidly into a local quasi-equilibrium so
c0 ∼ m

1/n

0 and Γ0 ∼ Rc0/(1+Rc0). This is observed numerically, and one can construct
a single surfactant evolution equation on that basis; however it is unwieldy. This
quasi-equilibrium where mo ∼ cn

o ensures, for large n, that the micelles only exist
where co ∼ 1 (i.e. within the droplet) and rapidly disassociate for co < 1.

We now present the results of our parametric study of the base state. In figure 5,
we show the effect of varying the total mass of surfactant (M =1, 3, 5) deposited on
the flow characteristics for high values of R (R = 100); we recall that high values of
R imply a relatively high threshold for the formation of micelles and a preference for
the surfactant to be at the interface. In this case the micelles within the drop act as
a reservoir of surfactant that, in turn, acts as an ‘insoluble’ surfactant; once released
it is drawn inexorably to the surface. Increasing M results in a significant rise in the
concentration of micelles in the drop region and a retention of large gradients in c

and Γ to relatively late times. These, in turn, give rise to large Marangoni stresses that
increase the thickness of the advancing ridge and lead to severe thinning upstream;
the latter effect leads to ‘pinning’ of the drop which maintains a relatively large height
till late times.

A very notable feature appears in the height and surfactant profiles: as the
surfactant mass increases, the interface in the thinned region develops, for M = 3,
a distinct protuberance from the droplet edge. This feature resembles the thickened
advancing capillary ridge in gravity-driven thin film flow down an inclined plane
(Troian et al. 1989a) and thermally driven climbing films (Kataoka & Troian 1997).
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Figure 5. The effect of varying the dimensionless mass, M , on h0, Γ0 and c0, with M = 1, 3, 5,
R = 100 and t =104; the remaining parameters are unaltered from figure 4. The m0 profiles
are not shown since m0 is approximately zero-valued at t = 104 for this set of parameters.

More remarkably, for M = 5, this splits away from the main drop to form an isolated
front, henceforth termed the ‘secondary’ front, separated from both the leading front
and the main droplet by severely thinned regions; this is shown in detail in the inset
of figure 5(a). These may appear to be ruptured regions or ‘dry spots’ as viewed by
an experimental observer; indeed these regions may be so thin that intermolecular
forces could be operational within them. The appearance of the secondary front is
reminiscent of that observed in the experiments of Lee et al. (personal communication,
2005) shown in figure 1(c). The surfactant is virtually all in the interfacial phase and,
interestingly, the Γ0 profile associated with M =5 no longer exhibits three constant-
gradient regions like those associated with M = 1 and M =3 (or the M =3 and
R =1 case shown in figure 4), but develops a somewhat extended, rather flat, region
upstream of the secondary front. The magnitude of the bulk surfactant, c0, is extremely
small, the reservoir of micelles is exhausted by t = 104, and they are completely absent
(hence they are not shown in figure 5).

It is clearly of interest to understand how the protuberance and secondary front
are formed. To elucidate this, we inspect the early time behaviour, shown in figure 6,
which depicts h0 and Γ0 for two cases: M = 5, for which the secondary front forms,
and M = 1, for which it does not. For relatively early times, 0 � t � 10, it becomes
clear that a small ‘lip’ is beginning to form at the edge of the droplet (see figure 6a);
at later times (shown in figure 5a), this develops into the secondary front. This lip is
absent from the M = 1 case (see figure 6b): here the whole droplet begins to move at
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Figure 6. The early time development of the ‘secondary’ front: (a) and (c) show the height,
h0, and interfacial surfactant, Γ0, development for t = 1, 2, . . . 10 for the base parameter set
with M = 5 and R = 100. (b) and (d) The same variables, but for M = 1. The lines are at
t =2, 4, 6, 8, 10. The maximal height and position of the height minimum are shown in (e) and
(f ), respectively, with M = 5 (solid lines) and M = 1 (dashed lines).

time t = 0. The surface surfactant is drawn into the uncontaminated region with the
low bulk and micelle concentrations unable to replenish the surface concentration.
This forms a concentration gradient, and hence surface tension driving force, across
the whole droplet. The droplet profile for M = 5, when contrasted with that for M = 1,
seems to suffer very little structural variation (see figure 6a), except very close to the
droplet edge. In this case, the surfactant is able to replenish itself at the interface
from the higher bulk and micelle concentrations that exist. Only the fluid at the
edge of the deposition is affected by the Marangoni-generated flow and change in
surface surfactant concentration. In the region from x = 0 to x =0.75 the situation
is almost static with only the capillary forces attempting to deform the droplet. At
the edge of the deposition, however, a surface tension gradient forms and flow is
generated, drawing fluid out in the new elongated shape that is seen in many of the
numerical results. This is clearly seen via inspection of the Γ0 profiles: for M = 5,
Γ0 is continually replenished from the micelle ‘reservoir’ so that Γ0 ≈ 1 within the
droplet region and Γ0x

is strongly localized at the droplet edge which acts to push
the lip out (see figure 6c). For M =1, Γ0(0, t) and h0(0, t) decrease, the whole droplet
is deformed outwards and a pronounced lip is absent (although xmin, the position of
the minimal height, appears to be weakly dependent on M , as shown in figure 6f ).



122 B. D. Edmonstone, R. V. Craster and O. K. Matar

100 102 104

100

101

1/3

1/2

(a)

t

X
f–1

100 102 104

100

1/7

(b)

t

h 0 (0
,t)

100 102 104

100

2/7

(c)

t
100 102 104

t
100 102 104

t

Γ
0 (0

,t)

100

(d)
c 0 (0

,t)

m
0 (0

,t) 100

(e)

Figure 7. Temporal evolution of the leading front position relative to the edge of the original
droplet deposition, Xf − 1, (a), the height of the droplet at the origin h0(0, t), (b), and the
surfactant concentrations at the origin Γ0(0, t), c0(0, t) and m0(0, t) (c–e), respectively, out to
t = 104. The parameter values are the same as in figure 5. The thick dotted lines in (a–c) have
constant slopes equal to 1/2, −1/7 and −2/7, respectively.

This is because at the higher M values, the relative abundance of micelles in the
droplet region sustains the development of large concentration gradients, which are,
in principle, capable of giving rise to several advancing fronts. We conjecture that
the reason that only two fronts are observed is the thinning which occurs upstream
of the primary front, which hinders severely the progress of the secondary front and
prevents the formation of others.

It is also instructive to consider the complementary results shown in figure 7, in
which we show the temporal evolution of several quantities of interest. In figure 7(a),
we plot the position of the leading front, Xf , relative to initial droplet edge. During
the early stages of the spreading process, Xf −1 ∼ t1/2 which corresponds to the scaling
for a reservoir-fed monolayer (Jensen & Grotberg 1992) and to the scaling observed
in the experiments by Hamraoui et al. (2004) and at early times in the modelling
work of Starov, de Ryck & Velarde (1997). At later times, the front position appears
to modify its behaviour to t1/3 which, when re-interpreted in axisymmetry, is that
of monolayer spreading of a constant surfactant mass as observed in the studies of
Starov, de Ryck & Velarde (1997) and Afsar-Siddiqui et al. (2003a, b). In figure 7(b–e),
we plot the temporal evolution of (h0, Γ0, c0, m0)(0, t), respectively. It is seen clearly
that the micelles act as a reservoir, dynamically feeding the monolayer bulk and
interface concentrations (see figure 7e). However, following an initial transient (whose
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Figure 8. The effect of varying the dimensionless mass, M , on h0, Γ0 and c0, with
M = 1, 3, 5, R = 10 and t = 104; the remaining parameters are the same as in figure 4.

period increases with M for a fixed value of R) that coincides approximately with the
stage of the spreading process during which Xf − 1 ∼ t1/2, the supply of micelles is
exhausted and the scalings h0(0, t) ∼ t−1/7 (Jensen & Naire 2006) and Γ0(0, t) ∼ t−2/7

are recovered; these are associated with the spreading of an insoluble surfactant
droplet on a thinner substrate for dilute concentrations.

Next, we examine the effect of altering R on the flow profiles. As R is decreased
from R = 100 to R = 10 (see figure 8) and then to R = 1 (see figure 9), the amplitude
of the secondary front decreases. Also, the micelles, whose ‘preference’ to remain in
the bulk of the droplet until the latter stages of spreading increases with decreasing
R (see figure 9d), act as reservoir for longer (they are still present in the bulk
after 104 time units, as shown in figure 9d). Thus decreasing the value of R, which
corresponds to a relatively low threshold for micelle formation, gives rise to a marked
increase in the magnitude of m0 and c0, as expected (one now has a reservoir release
of ‘soluble’ surfactant rather than one which, for R =100, has a strong affinity to
the interface). The gradients in Γ0 (c0 and m0) and therefore the magnitude of the
Marangoni stresses become smaller (larger) with decreasing (increasing) R, leading to
a slower spreading process, which is characterized by a weak front and a shallower
thinning region. Indeed, inspection of the temporal evolution of the front location
versus times in figure 10 reveals that it does not achieve the t1/3 scaling although the
drop itself does appear, particularly for M = 1, to move towards the known scalings
of h0(0, t) ∼ t−1/7 and, importantly, for the surfactant Γ0(0, t) = c(0, t) ∼ t−2/7. These
scalings are formally valid for an insoluble surfactant droplet and so the lack of
agreement is, perhaps, not so surprising. In the limit of small R one moves towards
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Figure 9. The effect of varying the dimensionless mass, M , on h0, Γ0, c0 and m0, with
M = 1, 3, 5, R = 1 and t = 104; the remaining parameters are unaltered from figure 4.

a situation where the bulk surfactant monomer and interfacial surfactant both play
an important role and the height profiles in figure 9 resemble those in Warner et al.
(2004b) that exhibit a smaller amplitude front at the leading edge.

The foregoing discussion has focused on the effect of varying M and R on the
dynamics. We illustrate in figure 11 the effect of n, Pes , Peb,m, b and α on the h0

profiles. As shown in figure 11(a), increasing the micelle size acts to confine the micelles
even more strongly within the drop. This is because the flux Jcm is proportional to
cn
0 − m0 and high powers of n act to ‘cut off’ the micelle concentration outside the

drop; the effect is to steepen the drop and increase the amplitude of the secondary
front. Decreasing the surface Péclet number, Pe, which promotes surface diffusion of
the surfactant molecules, leads to faster spreading and acts to move the locations of
the secondary and leading fronts further downstream; this is shown in figure 11b.
For Pe= 10 the profiles do not exhibit front formation. Increasing both the bulk
and micelle Peclet numbers, Peb,m, which reduces bulk diffusion of these species, has
the effect of depressing the droplet and suppressing the formation of the secondary
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Figure 10. Temporal evolution of the leading front position relative to the edge of the original
droplet deposition, Xf − 1, (a), the height of the droplet at the origin h0(0, t), (b), and the
surfactant concentrations at the origin Γ0(0, t), c0(0, t) and m0(0, t), (c–e), respectively, out to
t =104. The parameter values are the same as in figure 5. The thick dotted lines in (a–c) have
constant slopes equal to 1/2 and 1/3, −1/7 and −2/7, respectively.

front (see figure 11c) although the results associated with Peb,m = 1000 should be
interpreted with caution since such large values may render the rapid vertical
diffusion assumption, ε2Peb,m � 1, invalid. For increasing b, we see that the surfactant
leading front travels much further and the thinning is less pronounced, as expected
(see figure 11d). Variations in this geometric parameter are examined in the earlier
insoluble surfactant model by Warner et al. (2004b), and eventually, for b sufficiently
large there is a small droplet upon a relatively thick pre-existing film and a return to
a monolayer spreading problem as in Jensen & Grotberg (1992). One can approach
a similar limiting case in this micellar model: although some care is required with the
initial conditions. We have also found that decreasing the value of α, which increases
the degree of nonlinearity of the nonlinear equation of state, leads to an increase in h0

at the origin, the retention of large gradients in m0, c0 and Γ0 (not shown) to relatively
late times, and the formation of wide ‘dry spots’ between the primary and secondary
fronts (whose height diminishes with decreasing α) and elevated ridges downstream.

The effect of altering the remaining parameters on the flow profiles has been
discussed in previous studies (Warner et al. 2004b), hence only a brief summary of
this effect is provided here. Other results (not shown) indicate that promoting solubility
through a reduction of β increases the concentration of micelles in the bulk of the de-
posited drop, which, in turn, act as monomer sources, leading to a substantial increase



126 B. D. Edmonstone, R. V. Craster and O. K. Matar

0 5 10 15 20 25 30

0.2

0.4
(a)

(b)

(c)

(d)

(e)

h0

h0

h0

h0

h0

n = 100
10
1

0 5 10 15 20 25 30

0.2

0.4
Pes = 100000

1000

10

0 5 10 15 20 25 30

0.2

0.4
Peb,m = 1000

100

10

0 5 10 15 20 25 30

0.2

0.4
b = 0.025

0.05

0.1

0 5 10 15 20 25 30

0.2

0.4

x

α = 1
10
100

Figure 11. The effect of varying n, Pes , Peb,m, b and α on h0, shown in (a–e), respectively, at
t = 104. The parameters are the same as in figure 8 and M = 5.

in the gradients of Γ0 and c0. Consequently, the film thickness profiles associated with
low β values exhibit a wide, thickened advancing ridge preceded by a severely thinned
region, which is attached to a large drop near the flow origin. The parameter Kb

represents a ratio of the flow time scale to that associated with the breakup of micelles;
thus, large (small) Kb values signify rapid (slow) micelle dissociation. Increasing Kb

leads to a substantial increase in m0 near the flow origin and a concomitant increase in
both c0 and Γ0. The resulting increase in the magnitude of the concentration gradients
and the Marangoni stresses give rise to more severe thinning and the formation of a



Surfactant fingering beyond the critical micelle concentration 127

101 102

10-4

100

102

104

106

Time

�h

k = 90
70
50
40

Figure 12. The amplification ratio Gh versus time for various k with the base set of
parameters, R = 10, M = 3.

‘dry spot’ (although h0 does not become zero-valued in finite time in the absence of
intermolecular forces (Jensen & Grotberg 1992), which have been neglected from the
present analysis) immediately downstream of the deposited drop.

4. Stability analysis
As mentioned in the introduction, the spreading process is accompanied by finger

formation. It is therefore interesting before presenting our stability results to anticipate
how the structural differences to the base state brought about via variation of the
parameters associated with the presence of micelles (e.g. R and M) would affect the
stability of the system in the light of the fingering mechanism proposed by Warner
et al. (2004a, b). These authors established the necessity of having sharp gradients
in both h0 and Γ0 in the thinned region connecting the drop to the leading front
as essential ingredients for instability. They showed that small local perturbations
to the film thickness in that region grow, thereby increasing the surface velocity,
transporting surfactant away from it. This promotes transverse Marangoni-driven
flow from surfactant-rich adjoining regions, which enhances perturbation growth and
destabilizes the system, leading to finger formation. Inspection of the h0 and Γ0

profiles in figure 5 associated with large M values reveals that |Γ0x| is large at the
edge of the secondary front. It is expected, therefore, that fingers should form at this
point. We turn our attention now to an investigation of the fingering phenomenon,
placing particular emphasis on the effect of R and M on the stability characteristics
of the system.

4.1. Transient growth

As described in § 2.3 we look at the stability of the spreading process to transverse
perturbations using a linear stability approach. However, as the base state itself
evolves this is done using transient growth analysis with the growth characterized by
the growth measures introduced in § 2.3. The base and perturbation equations are
solved using the boundary and initial conditions given in § 2.4.

We begin the discussion of the results of our transient growth analysis by showing
the amplification ratio, Gh, versus time for various transverse wavenumbers k. It
is notable that there is preferred wavember that maximizes growth; for instance in
figure 12 we see that k = 70 ultimately overtakes the other k values: lower k (cf. k =40
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parameter set of figure 4.

in figure 12) are preferred at earlier times, very high k (cf. k = 90 in figure 12) are
moderated by capillary and hence are not optimal for growth, and so an intermediate
wavenumber is ultimately preferred.

It is clearer to visualize trends through numerically generated ‘dispersion curves’ as
in figure 13. Using the growth measures of § 2.3 we extract the asymptotic growth rate
ωh; in practice the values of Gh at t =250 are used to compute these. We then plot the
parameteric dependence of ωh versus k on the mass M for R = 1, R = 10 and R = 100.
The dispersion curves are paraboloidal, exhibiting well-defined ‘most-dangerous’ and
‘cut-off’ modes, characterized by wavenumbers km and kc, respectively; the positive
values of ωh for 0 � k � kc indicates the presence of an instability. Inspection of
figure 13 also reveals that for all values of R examined, ωh(km) and kc exhibit a
non-monotonic dependence on the mass of surfactant deposited: both ωh(km) and
kc are maximized for an intermediate value of M , M =2. Beyond this value of M ,
however, km is weakly dependent on M . This indicates that for a given value of R

the system is most unstable (and the band of ‘unstable’ wavenumbers is widest) for
concentrations just beyond the CMC; deposition of surfactant solution droplets of
higher concentrations leads to a more stable spreading process, characterized by lower
ωh(km) and kc values. Although one would expect that large concentration gradients,
and therefore significant Marangoni stresses, would be more sustainable for larger M

values, the spreading is less unstable than for intermediate M for which the height
disparity between the protuberance and the downstream minimum is larger than that
between the peak of the secondary front and the minimum (see inset of figure 5a).
In analogy to related interfacial flows involving clean and surfactant-covered thin
films driven by body forces and surface stresses (Troian et al. 1989a; Kataoka &
Troian 1997; Eres, Schwartz & Roy 2000; Edmonstone et al. 2005), regions which
exhibit such height and, therefore, mobility mis-matches are unstable to transverse
disturbances; the perturbation growth rate and characteristic wavelength increase
with increasing height mis-match.

As also shown in figure 13, increasing R (a preference for the surfactant to be
at the interface) is destabilizing leading to a substantial and monotonic increase
in both ωh(km) (approximately a ten-fold increase) and km (from km ≈ 40–50 for
R =1 through to km ≈ 70–80 for R = 100), that is larger growth rates and fingers of
shorter wavelength; this is because increasing R promotes the establishment of large
concentration gradients and increases the magitude of Marangoni stresses. The cut-off
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Figure 14. Base-state and perturbation profiles for the same parameter set as in figure 6,
k =40 and t =125. The amplitudes of the perturbation height are normalized to unity, and the
same scaling factor is then applied to the surfactant perturbation.

wavenumber, kc, on the other hand, also grows monotonically with R for small and
large M but appears to saturate with increasing R (and decrease very slightly for
large R) for intermediate M values.

Next, we examine the structure of the perturbations in relation to that of the base
state in order to determine the region targetted by the instability. We show in figure 14
the base state and perturbation flow profiles for R = 1 and the ‘base’ case parameter set
(C = 0.001, Pes = 104, Peb =Pem = 100, Ks = 1, Kb = 1, β =1, α = 100, n= 10, M = 3,

b = 0.05) at t =125. Here, the amplitude of the perturbation quantities, whose
wavenumber coincides with that of the most dangerous mode for these parameters,
has been suitably scaled for clarity of presentation. As shown clearly in figure 14, the
perturbations in the film thickness and surfactant concentrations target the thinned
region connecting the drop and the leading front; this is similar to the result obtained
by Warner et al. (2004a, b). Figure 14 also shows that h1 is ‘out of phase’ with
Γ1, c1 and m1: for a fluid region of increased height the surfactant concentration is
lower. The increase in height and lower surfactant leads to an increase in the surface
velocity due to the reduction of viscous drag and the increase in the local value of
the concentration gradient. This velocity increase leads to faster surfactant transport
from this region and, in turn, larger gradients. Transverse Marangoni-driven flow acts
to replenish the surfactant deficiency from surfactant-rich adjoining regions, which
leads to further thickening of the perturbation in relation to these relatively depressed
regions. This, therefore, further destabilizes the system and reinforces the formation
of fingers.
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The results presented in § 3 have shown that, for certain parameter values, the
base-state thickness profiles exhibit a qualitatively different feature from that seen
in previous studies: the development of a distinct ‘protuberance’, or a ‘secondary’
front, between the drop and leading front. Clearly, this feature arises for various
combinations of parameters. Rather than conduct an exhaustive parameteric study
of the effect of all parameters on the system stability and disturbance structure, we
concentrate below on the stability of three qualitatively different base-state thickness
profiles obtained by fixing R = 100 and varying M (see figure 15): a h0 profile with no
secondary front (M = 1), another with a pronounced protuberance but with a single
thinned region (M = 3) and yet another with a secondary front straddling two thinned
regions (M = 5) located upstream of the leading front and immediately downstream
of the drop.

In figure 15, we show scaled h1 profiles (with k =40) superimposed upon h0 in
order to determine whether or not the presence of the secondary front affects the
structure of the instability. As shown in figure 15, the thinning region connecting the
drop (for M = 1) or the leading edge of the protuberance and secondary front (for
M = 3 and M = 5, respectively) are vulnerable to transverse perturbations. This is as
expected following our examination of the base-state profiles in § 3 (see in particular
figure 5a (inset) and figure 6) and our discussion above regarding the existence of
possible connections with instabilites in related driven thin film flows. In fact, the
structural similarity between the protuberance shown for M = 3 in figure 5, the fact
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are the same as in figure 4. Here, the ‘growth measure’ is given by (2.52).

that an essentially constant Γ0x
exists over the leading edge of this feature and the

fact that it is unstable, suggest a close analogy with the thermally driven thin film
problem (Kataoka & Troian 1997) and that involving flow down an incline of a
surfactant-covered film (Edmonstone et al. 2005). In both of these flows, the surface
stress is constant at the leading edge of the advancing ridge, which exhibits fingering.
The other thinning region, located downstream of the drop for the largest M value
used, appears to be stable. This may be because there exists a pathway to convect
perturbations downstream from the thinning region nearest the drop so that they
become ‘pinned’ at the downsloping edge of the secondary front where they can
undergo substantial amplification.

Although we have focused on the effect of varying M and R on the stability
characteristics, it is, nevertheless, possible to anticipate the effect of n, Pe, Peb,m, b

and α on the stability of the spreading process. Inspection of figure 11 reveals that
increasing n, Pe, Peb,m and α, and decreasing b, which give rise to more pronounced
secondary fronts, is expected to lead to more unstable spreading. We turn our attention
now to the nonlinear stability of the system.

4.2. Two-dimensional numerical simulations

In order to complement the results of the transient growth analysis (TGA), which
allows the examination of the linear stability of the system only, we have also
conducted transient numerical simulations of the fully nonlinear two-dimensional
evolution equations (2.17)–(2.20); the objective here is to explore the stability of the
flow in the nonlinear regime.

Equations (2.17)–(2.20) are solved using the ADI scheme briefly described in § 2.
We have ensured that these nonlinear simulations, in the absence of perturbations,
reproduce the base states previously obtained. We have also ensured that, starting
from small periodic disturbances of known wavenumber, k, to a base state, the
predictions of the ADI procedure are in excellent agreement with those of the TGA;
such a cross-validation study is illustrated in figure 16. This inspires confidence not
only in the reliability and accuracy of the ADI procedure but also in the TGA results.

Using the validated ADI method we have carried out ‘numerical experiments’
by applying initial pseudo-random perturbations, taken from a uniform distribution
with amplitude [−10−2 : 10−2], in 0 < x < 2. The parameter values used to generate
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Figure 17. The evolution of the film thickness h showing the finger development along
the secondary front for M = 5, R = 100 and the same remaining parameters as in figure 5.
(a) t = 10, (b) t = 25, (c) t = 50, (d) t = 100.

the results presented in this section are C = 0.001, Pes = 104, Peb = Pem = 100, Ks =1,
Kb = 1, β = 1, α = 100, n= 10, b = 0.05 and the evolution was then followed to t = 100.
The film height evolution is shown in figure 17 with M = 5 and R = 100. It is clear upon
inspection of figure 17 that the initially noisy disturbances have organized themselves
into coherent structures which appear to target the region between the drop and the
leading front preferentially, where the ‘secondary’ front develops, in agreement with
the TGA predictions; remnants of these disturbances are still apparent as surface
ripples between this front and the leading front at t = 10, which decay at later times.
As the secondary front begins to separate from the drop, and another thinning
region develops upstream of it, the coherent structures assume the shape of fingering
patterns, which, at t =100, resemble those shown in figure 1(c); the leading front
has propagated far ahead and out of our main region of interest. In contrast to the
experimental results of Lee et al. (personal communication, 2005) shown in figure 1(c),
the thinning region immediately upstream of the fingering secondary front is stable.
We posit, however, that this region may have become unstable in the presence of
intermolecular interactions (such as van der Waals forces): the ramified fingering
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Figure 18. The height profiles at t =100 for varying mass (a) M = 1, (b) M = 3, (c) M = 5
and R = 100. The rest of the parameters are unchanged from figure 17.

streamlets shown in figure 1(c) are structurally rather different from the fingering
patterns exhibited by the secondary front, which, in turn, suggests that their origin
may also be different.

Using the ADI method, we have also examined the effect of varying the mass
of deposited surfactant, M , with the rest of the parameters fixed, on the nonlinear
stability of the spreading process. This may be interpreted as being the equivalent of
keeping the volume of the deposited drop constant while increasing the concentration
of the surfactant solution. In figure 18, we show surface plots of the film thickness
for M = 1, 3, 5, for relatively long times, t =100. As is clearly shown in this figure, the
increase in surfactant mass (M = 1 → M =3) acts to destabilize the system, leading to
larger growth rates and fingers of shorter wavelength; this is in agreement with the
discussion of the TGA results in § 4.1. It is also worthy of mention that the fingering
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Figure 19. An evolving droplet of C12E10 at 0.5CMC spreading on a 60 nm EG film
showing branching fingers, taken from Hamraoui et al. (2004).

instability occurs in the nonlinear regime for the M =3 case despite the absence of a
pronounced thickness minimum between the drop and the leading front, which is in
qualitative agreement with the results of Hamraoui et al. (2004) shown in figure 1(b).
That is, the instability appears to target the protuberance between the drop and
leading front. We have also included the film thickness surface plot associated with
M = 5 and t =100 discussed above in figure 18 to facilitate comparisons with the
M = 1 and M = 3 cases. It is clear that increasing M beyond M = 3 for this set of
parameters renders the spreading less unstable with less pronounced fingering patterns
that target the secondary front.

Finally, yet another fingering behaviour appears for some parameter values in
experiments, as shown in figure 19, where large fingers emerge from the droplet.
Initially, these are a single finger, but these then tip-split repeatedly to grow a tree-
like structure. Each finger has a distinct capillary ridge at its tip and both the droplet
and fingers appear to be at the same, or very similar, height. We have attempted to
reproduce numerically certain details of this fingering phenomenon that are observed
experimentally. In particular, we have focused on the tip-splitting events, which are
clearly shown to occur in figure 19, following the protrusion of a ‘primary’ finger from
the main spreading drop. The initial conditions we use are those given by (2.50) with
the height set such that A= 1 and f (x, y) = 1 + b in y2 + (x − 2)/2 < 0 (a parabolic
non-trivial geometric perturbation to the drop) and with the surfactant at Γo, co, mo

within the extruded finger. In figure 20, we show the evolution of this highly localized
disturbance to the drop leading edge. As is clearly shown in this figure, the disturbance
undergoes a secondary instability that manifests itself in the form of wiggles at t = 10
which are particularly prominent at the disturbance leading edge in the y = 0 plane;
this is as expected since the wiggles in this region grow rapidly under the action of the
largest concentration gradient which is in the x-direction. These wiggles become more
pronounced with increasing time, leading to the formation of digitated structures
that emanate from the initial protrusion. Close inspection of the structures shown at
t = 225 in figure 20, which bear great resemblence to those shown in figure 19, reveals
that the tip of the finger in the y = 0 plane has split into two smaller fingers and, as a
result, has been ‘shielded’ slightly by the two slender adjoining fingers, which appear
to spread more rapidly. The outermost, broader fingers also appear to have shielded
the structures nearest the drop which have not developed into elongated fingers. The
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fingers have developed notable capillary ridges at their tips which are similar to those
seen in the experiments; the fingers are also similar in height to that of the main
droplet. Also notable in the simulations is the absence of a pronounced minimum.

The application of this localized disturbance to the edge of the drop has therefore
resulted in the formation of three generations of fingers and the preferential
‘channelling’ of the liquid from the drop into these fingers: as shown in figure 20,
the drop and the fingers leading edges have spread approximately 0.25 and 3.5
dimensionless units in the x-direction, respectively.

5. Conclusions
The work presented in this paper extends the previous studies of Warner et al.

(2004a, b) to cover cases in which droplets of surfactant solution spread on very thin
liquid layers at high concentrations, which are typical of experimental situations. It
also represents one of the few attempts in the literature at accounting explicitly for
the presence of micellar aggregates and their effect on the dynamic evolution of a free
surface through their formation and breakup. In addition to demonstrating better
agreement with experimental trends and observations in terms of the surfactant
spreading problem, this paper, more generally, provides a useful framework for
modelling the large-scale evolution of films, threads and jets laden with surfactant
beyond the CMC. Such a framework can be utilized to gain insight into phenomena
such as super-spreading (Stoebe et al. 1997a, b); such an investigation is already
underway.
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We have examined the spreading of surfactant on thin liquid films beyond the criti-
cal micelle concentration (CMC) using lubrication theory, and assumed rapid verti-
cal diffusion, to derive a coupled system of evolution equations for the film thickness,
surfactant monomer surface and bulk concentrations, and micelle bulk concentration.
These highly nonlinear, two-dimensional partial differential equations are para-
meterized by bulk and surface Péclet numbers, a capillary parameter, sorption kinetics
constants, a solubility parameter, the size of the micellar aggregates, the nonlinearity
of the surfactant equation of state, the dimensionless thickness of the pre-existing
film, the mass of deposited surfactant and a parameter reflecting the affinity of the
system to form micelles; here, we have focused on the latter two parameters, M and
R, respectively.

Our investigation of the unperturbed spreading profiles has shown that for fixed R,
a protuberance emerges from the drop, which, with increasing M , separates to form a
‘secondary’ front, upstream of the primary advancing front, located at the surfactant
leading edge. For the largest values of M examined, the unperturbed thickness profiles
exhibit two thinning regions that separate the drop and the secondary front, and the
primary and secondary fronts; this is in qualitative agreement with experimental
observations for spreading at concentrations larger than the CMC. The results of our
transient growth analysis and numerical simulations have revealed that increasing R

destabilizes the spreading process monotonically, and that process is most unstable for
an intermediate value of M; connections with other interfacial instabilities involving
driven thin films have also been established. We have also shown that our numerical
simulations can capture shielding and tip-splitting events which have been observed
experimentally. Detailed analysis of these events will be the subject of future work.

It is also worthwhile to briefly discuss other micelle disassociation models, such as,
say, the Fainerman model: the micelle flux (after suitable non-dimensionalization) is
Jcm = − Kbm(1 − c), i.e. it builds in a cut-off preventing disassociation if the bulk
monomer concentration is too high. Numerical simulations using this flux, instead of
Jcm =Kb(c

n − m), for the one-dimensional base states, also yield the same features, i.e.
the secondary front, protuberance, etc., suggesting that the features that we describe
are not strongly dependent upon the disassociation model.
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